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Influence of experimental parameters on the
estimated value of Weibull’s modulus
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This paper is devoted to the study of the influence of experimental parameters and
calculation hypotheses on the estimated value of Weibull’s modulus, m, of structural
ceramics. Numerical simulation programs have been written and rupture tests have been
performed in order to characterize the role of the number of samples tested and thus of the
probability estimator. One can thus define an optimal value of the number of samples
needed to estimate Weibull’s modulus with a given uncertainty. Other numerical programs
simulate the effects of the loading rate as well as the effects of Paris’ law constant, A and
the propagation exponent, n, on the m value. C© 1999 Kluwer Academic Publishers

1. Introduction
The fracture of brittle materials at room temperature
is a phenomenon exhibiting random character, the be-
haviour law between stresses and strains being limited
to an elastic zone that is not pre-defined. The statistical
Weibull’s [1, 2] analysis is one of the means used to
overcome this problem.

This analysis supposes an unimodal distribution of
flaws governing the ruin and, in the particular case of
a solid of volume,V , submitted to an uniform stress
field,σ , it expresses the survival probability,Ps, of this
volume to the stress,σ , by means of the exponential
law

Ps(σ ) = exp

[
−
(
σ − σu

σ0

)m

V

]
(1)

known as a “three parameter Weibull’s law”, wherem
is Weibull’s modulus,σu the ultimate stress andσ0 is a
standardization constant.

By convenience, the threshold valueσu is often con-
sidered to be null and Equation 1 becomes a “two pa-
rameter Weibull’s law” (governed bym andσ0).

A logarithmic plot of one of the previous laws allows
estimation of the value of Weibull’s modulus. Indeed,
for given values ofσ0 andV , one can write

ln

(
ln

1

Ps

)
= m ln(σ )+ Cte (2)

One thus obtains the equation of a straight line, the
slope of which is equal to Weibull’s modulus.

In practice, for a series of tests, a probability esti-
mator, whose most usual expressions are recalled here-

after, is used to allocate a survival probability for each
strength level

Ps(σ ) = 1− i /(N + 1)

Ps(σ ) = 1− (i − 0.5)/N

Ps(σ ) = 1− (i − 0.3)/(N + 0.4)

Ps(σ ) = 1− (i − 0.375)/(N + 0.25)

where N is the number of samples, andi is the i th
sample of a family (1≤ i ≤ N). Besides this approach,
which allows one to estimate Weibull’s parameters by
a least mean square (LMS) method applied to a cloud
of experimental data, one can use the maximum like-
lihood method [3]. For structural ceramics, the use
of this latter method is advocated by the European
Standard EN843 [4], which also suggests the form
Ps(σ )= 1− (i − 0.5)/N for the probability estimator.

Thus, several methods can be used to estimate them
value and it is advisable to determine the confidence
that one can have in each of them for given study con-
ditions. The role of the probability estimator, having
been studied many times previously [5–8], is not care-
fully detailed in this paper, which deals chiefly with the
influence of experimental parameters, particularly with
the number of samples and the loading rate.

2. Discussion
2.1. Influence of the number of samples
Weibull’s analysis is a statistical tool devoted to very
scattered data, which allows one to predict the be-
haviour of a large population family from one of its
reduced images. In order to use this tool efficiently,
it is necessary to validate its stability in regard to the
number of samples tested. In others terms, it is good to
determine the minimal size of the statistical sampling
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ensuring an optimizedm value. Such a scientific pre-
occupation also has economical scope because it tends
to optimize the number of tests and therefore to reduce
their costs.

To reply to this question, we have used an original nu-
merical simulation whose results have been compared
with those of experimental measurements.

2.1.1. Numerical simulation
A program composed of two moduli has been devel-
oped that allows simulation of fracture tests on lots of
samples coming from an ideal family (that is to say, a
family that exhibits perfect Weibull’s distribution).

The first modulus generates ideal families whose
number of samples, average strength and Weibull’s
modulus are known.

The second modulus simulates, in these families, ran-
dom sampling of lots smaller than the initial lot. Two
types of sampling procedures are possible:

1. Cumulative sampling. Only values unused after
constitution of loti are available for constitution of lot
i + 1. These latter values are added to those of loti to
constitute a larger lot. It is the situation met when, at
the end of a series of tests, an experimenter decides to
add values to those already obtained. At the limit, all
the samples are tested and Weibull’s modulus obtained
is equal to the modulus of the whole population.

2. Non-cumulative sampling. All the values are
available to constitute each lot. One can thus simulate
an infinity of sub-lots whose populations are inferior or
equal to that of the initial family. This is a situation that
would create an infinity of experimenters, each of them
making a lot of given population from all the available
samples.

Fig. 1a–f illustrates the results of such simula-
tions for ideal initial families having the following

TABLE I Number of samples needed to obtainm within ±10% of its actual value

Family population

Sampling 50 100 200 300 400 500 750 1000 1500 2000

Non-cumulative 29 55 65 102 115 140 155 180 220 220
Cumulative 23 42 60 65 100 135 140 150 200 200

TABLE I I Dependance ofm on the probability estimator and on the calculation method

Estimator 1 Estimator 2 Estimator 3 Estimator 4
Methods 1− i /(N+ 1) 1− (i − 0.5)/N 1− (i − 0.3)/(N+ 0.4) 1− (i − 0.37)/(N+ 0.25)

LMS (three parameters) m= 10.5 m= 9.47 m= 9.94 m= 9.77
σmoy= 133.5a r = 0.983 r = 0.985 r = 0.984 r = 0.984

σmin= 81a σmin= 81a σmin= 81a σmin= 81a

σu= 20a σu= 32.4a σu= 26.8a σu= 28.8a

σ0= 30.5 σ0= 23.5 σ0= 26.6 σ0= 25.5
LMS (two parameters) m= 12.44 m= 12.72 m= 12.59 m= 12.64
σu= 0a r = 0.982 r = 0.984 r = 0.983 r = 0.983

σ0= 43.9 σ0= 45 σ0= 44.5 σ0= 44.7
Maximum likelihood m= 11.32 σmoy= 139.97a

aValues are in megapascals.

characteristics: population,N= 500, 1000 and 2000;
mean strength, ¯σ = 250 MPA; and Weibull’s modulus,
m= 12.

Extreme values obtained for each type of lot are rep-
resented by points, each point corresponding to the
arithmetic average of values obtained from ten lots of
equal population. Them modulus of each lot is cal-
culated by the maximum likelihood method. One can
thus determine the minimal number of samples to test
in order to estimate Weibull’s modulus within±10%,
for example, of its actual value.

Analysis of all the results so obtained leads to the
conclusions shown in the Table I and Fig. 2.

One observes that the number of samples needed to
estimate Weibull’s modulus within±10% of its actual
value does not increase significantly when the size of
the initial family grows (i.e. with regard to the total pop-
ulation, Weibull’s modulus decreases in relative value).
Consequently, a significant limitation of the number of
tests can be considered, by accepting a reasonable rel-
ative error in them value.

2.1.2. Experimental results
Four-point bending fracture tests on ferrite ceramic
samples permit constitution of a file of 319 stress values,
on which the previous numerical models of sampling
(established in the case of an ideal population) have
been applied.

2.1.2.1. Weibull’s modulus of the initial lot.Weibull’s
modulus corresponding to the 319 tested samples has
been determined: (i) by linear regression according to
“two and three parameter” Weibull’s laws using the
four forms (recalled in Section 1) for the probability
estimator; and (ii) by the maximum likelihood method.
The results thus obtained are gathered in Table II, and
show that:
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Figure 1 Weibull’s modulus versusN (number of samples) for lots obtained by cumulative and non-cumulative sampling: (¨¨¨) real values; (—)
tendency curve.

Figure 2 Relative number of samples needed to obtainm within±10%
of its actual value.

1. Whatever the probability estimator, the “three pa-
rameter” Weibull’s law gives the weakestm values and
the “two parameter” law gives the highest values.

2. The maximum likelihood method leads to values
ranging between the precedents, but which are far closer
to raised values than to weak values.

2.1.2.2. Application of the model to experimental re-
sults.From the 319 previous real values, lots have been
constituted by cumulative and non-cumulative sam-
pling according to a process similar to that used for
ideal families.

Fig. 3a and b illustrates the results obtained and
shows that:
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Figure 3 Weibull’s modulus versusN for experimental data: (¨¨¨) real values; (—) tendency curve.

1. Whatever the considered method, 100 samples are
necessary to estimate Weibull’s modulus within±10%
of its real value.

2. This conclusion agrees well with predictions of
the simulation (cf. Fig. 1a–f) and therefore validates
this latter.

2.1.2.3. Remark on the maximum likelihood method.
Figs 4 and 5 are “two and three parameter” Weibull’s
plots of the initial family (probability estimator,
Ps(σ )= 1− (i − 0.5)/N). One observes the presence
of five stress values located to the left extremity
of the distribution and obviously out of the average
tendency.

TABLE I I I 318 samples

Estimator 1 Estimator 2 Estimator 3 Estimator 4
Methods 1− i /(N+ 1) 1− (i − 0.5)/N 1− (i − 0.3)/(N+ 0.4) 1− (i − 0.37)/(N+ 0.25)

LMS (three parameters) m= 7.22 m= 6.78 m= 6.97 m= 6.9
σmoy= 133.7a r = 0.986 r = 0.988 r = 0.987 r = 0.987

σmin= 87.2a σmin= 87.2a σmin= 87.2a σmin= 87.2a

σu= 57.2a σu= 62.8a σu= 60.4a σu= 61.2a

σ0= 11.3 σ0= 9.27 σ0= 10.12 σ0= 9.84
LMS (two parameters) m= 12.94 m= 13.21 m= 13 m= 13.136
σu= 0a r = 0.982 r = 0.9818 r = 0.982 r = 0.982 04

σ0= 45.9 σ0= 46.9 σ0= 46.5 σ0= 44.7
Maximum likelihood m= 11.43 σmoy= 140.07a

aValues are in megapascals.

TABLE IV 317 samples

Estimator 1 Estimator 2 Estimator 3 Estimator 4
Methods 1− i /(N+ 1) 1− (i − 0.5)/N 1− (i − 0.3)/(N+ 0.4) 1− (i − 0.37)/(N+ 0.25)

LMS (three parameters) m= 4.59 m= 4.41 m= 4.46 m= 4.43
σmoy= 134a r = 0.993 r = 0.994 r = 0.993 r = 0.993

σmin= 98.3a σmin= 98.3a σmin= 98.3a σmin= 98.3a

σu= 85.2a σu= 87.6a σu= 86.8a σu= 87.2a

σ0= 2.42 σ0= 2 σ0= 2.2 σ0= 2
LMS (two parameters) m= 13.3 m= 13.55 m= 13.44 m= 13.48
σu= 0a r = 0.978 r = 0.975 r = 0.977 r = 0.976

σ0= 47.4 σ0= 48.3 σ0= 47.9 σ0= 48
Maximum likelihood m= 11.53 σmoy= 140.15a

aValues are in megapascals.

Tables III–VII correspond to files containing between
314 and 318 values, obtained by eliminating each time
the weakest stress (left extremity) of the preceding file,
until the five values, apparently out of the distribution,
have been eliminated.

One observes that progressive suppression of data
out of the distribution:

1. Decreases strongly (−300%) the results of the
“three parameter” model.

2. Increases 10–15% of the results of the “two pa-
rameter” model.

3. Increases very slightly (3.5%) the results of the
maximum likelihood method, which thus appears as
less dependent on “suspicious” values.
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TABLE V 316 samples

Estimator 1 Estimator 2 Estimator 3 Estimator 4
Methods 1− i /(N+ 1) 1− (i − 0.5)/N 1− (i − 0.3)/(N+ 0.4) 1− (i − 0.37)/(N+ 0.25)

LMS (three parameters) m= 4 m= 3.87 m= 3.93 m= 3.89
σmoy= 134a r = 0.994 r = 0.995 r = 0.995 r = 0.995

σmin= 100a σmin= 100a σmin= 100a σmin= 100a

σu= 91.6a σu= 93.6a σu= 92.8a σu= 93.2a

σ0= 1.37 σ0= 1.14 σ0= 1.23 σ0= 1.17
LMS (two parameters) m= 13.47 m= 13.72 m= 13.61 m= 13.65
σu= 0a r = 0.974 r = 0.971 r = 0.973 r = 0.972

σ0= 48 σ0= 48.9 σ0= 48.5 σ0= 48.7
Maximum likelihood m= 11.6 σmoy= 140.23a

aValues are in megapascals.

TABLE VI 315 samples

Estimator 1 Estimator 2 Estimator 3 Estimator 4
Methods 1− i /(N+ 1) 1− (i − 0.5)/N 1− (i − 0.3)/(N+ 0.4) 1− (i − 0.37)/(N+ 0.25)

LMS (three parameters) m= 3.26 m= 3.17 m= 3.2 m= 3.21
σmoy= 134.2a r = 0.996 r = 0.997 r = 0.997 r = 0.997

σmin= 105a σmin= 105a σmin= 105a σmin= 105a

σu= 99.2a σu= 100.4a σu= 100a σu= 100a

σ0= 0.52 σ0= 0.44 σ0= 0.45 σ0= 0.47
LMS (two parameters) m= 13.61 m= 13.85 m= 13.75 m= 13.78
σu= 0a r = 0.97 r = 0.966 r = 0.968 r = 0.967

σ0= 48.54 σ0= 49.45 σ0= 49 σ0= 49.2
Maximum likelihood m= 11.66 σmoy= 140.3a

aValues are in megapascals.

TABLE VI I 314 samples

Estimator 1 Estimator 2 Estimator 3 Estimator 4
Methods 1− i /(N+ 1) 1− (i − 0.5)/N 1− (i − 0.3)/(N+ 0.4) 1− (i − 0.37)/(N+ 0.25)

LMS (three parameters) m= 2.9 m= 2.79 m= 2.83 m= 2.84
σmoy= 134.3a r = 0.997 r = 0.996 r = 0.996 r = 0.996

σmin= 108a σmin= 108a σmin= 108a σmin= 108a

σu= 102a σu= 104a σu= 103.6a σu= 103.6a

σ0= 0.27 σ0= 0.22 σ0= 0.23 σ0= 0.24
LMS (two parameters) m= 13.71 m= 13.94 m= 13.84 m= 13.87
σu= 0a r = 0.967 r = 0.962 r = 0.964 r = 0.964

σ0= 48.92 σ0= 49.75 σ0= 49.4 σ0= 0.2249.52
Maximum likelihood m= 11.72 σmoy= 140.36a

aValues are in megapascals.

Figure 4 LMS Weibull’s plot withσu= 0 MPa (two parameters). Figure 5 LMS Weibull’s plot withσu= 20 MPa (three parameters).
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2.2. Influence of loading rate
2.2.1. Introduction
The rupture of structural ceramics [9] starts in mode I
on the flaw whose stress intensity factor first reaches
the critical value,KIc.

The stress intensity factor in opening mode is given
by the relationship

KI = Yσaa
1/2 (3)

in which Y is a shape factor,σa the applied stress and
a the flaw size.

Formally,KI can reach the critical valueKIc:

1. By an increase of flaw size under constant applied
stress (one speaks then of “critical flaw size”).

2. By an increase of applied stress, whereas the flaw
size remains constant (one speaks then of “critical
stress”).

But, in fact, simultaneous increase of these two param-
eters leads to ruin.

In stage 1, the crack velocity,V , is given by Paris’
law

V = da

dt
= AKn

I (4)

whereAandn (propagation exponent) are experimental
constants, andt is the time.

For high loading rate values, rupture is chiefly gov-
erned by the rapid increase of applied stress, the size
of the flaw remaining nearly constant (inert rupture):
values of strength thus determined lead therefore to the
“true value” of Weibull’s modulus. But, in fact, tests
are performed with relatively weak loading rates (typi-
cally 60 MPa s−1) so, when rupture occurs, flaws have
increased their size by a slow crack growth mechanism.

The problem is therefore to determine the influence
of this slow propagation on the Weibull parameters of
the initial distribution.

To reply to this question, we have written a program
(cf. the flow chart in Fig. 6) that simulates in an it-
erative manner the growth of a flaw of known initial
size within a material whose entire rupture properties
are also known. Each time, one calculates the instanta-
neous value of the stress intensity factor, the value of
the crack velocity and, finally, the resulting increase in
flaw size is determined. The process is reiterated un-
til the KI value reaches the material toughness. In the
last stage, one builds a stress file of the tested sam-
ples, from which one deduces Weibull’s modulus at the
loading rate considered.

2.2.2. Hypotheses
An ideal initial family of 200 samples has been con-
stituted on the basis of the mechanical characteristics
obtained in a previous work [10] dealing with a com-
mercial quality alumina (Degussa AL23):

m= 12;n = 22; ln(A) = −340;KIc = 3.7 MPa m−1/2

Figure 6 Block diagram of the slow crack growth simulation program.

Because of the weakness of the relative flaw size, the
shape factor,Y, is taken equal to 1.9 and the probability
estimator,Ps, is always 1− (i − 0.5/N).

The constant rate in stage 2 is fixed [10] to 10−4 m s−1

and the propagation in stage 3 is neglected. Loading
rates can vary from 0.2 and 200 000 MPa s−1.

2.2.3. Results
Fig. 7 illustrates the evolution of Weibull’s plot of the
previous family when the stress rate varies from 2 to
4600 MPa s−1. One observes that, whatever the loading
rate, ln[ln(1/Ps)] versus ln(σ ) is always represented by
a straight line, the slope of which (cf. Weibull’s modu-
lus) decreases when the stress rate increases.

In the scanned range,m decreases from 13.9 to 12.2
(−11%), while the average strength grows at the same
time from 188 to 249.6 MPa (+30%).

Figure 7 Variation of Weibull’s plot with the loading rate.
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Figure 8 Weibull’s modulus versus∂σ/∂t .

Finally, Fig. 8 shows the continuous variation of
Weibull’s modulus according to stress rate, when stage
2 in the curveV(K ) is or is not taken into account.

Figs 7 and 8 show also that:

1. The sensitivity of Weibull’s modulus to the stress
rate is at a maximum in the range 2–2000 MPa s−1,
which corresponds to usual loading rates.

2. Stage 2 does not appear to influence the life time,
but seems to influence variations in Weibull’s modulus
with the stress rate.

Figure 9 Weibull’s modulus versus∂σ/∂t andn for −330≤ ln(A)≤−350.

2.2.4. Influence of Paris’ law parameters
on Weibull’s modulus

ParametersAandn of Paris’ law are determined experi-
mentally, classically by tests of double torsion [8, 9, 11]
or dynamic fatigue at constant rates [12, 13]. The results
obtained by using these two methods are rarely in good
agreement and the important discrepancies frequently
observed render hazardous the life-time prediction for
components in use. We have focused our attention on
the influence of these parameters on Weibull’s modu-
lus. By using the numerical program described in the
previous paragraph, we have characterized the varia-
tions of Weibull’s modulus according to the stress rate
for different A andn values (ln(A)∈ [−350;−330]);
(n∈ [21; 23]). The studied family is composed of 200
samples and the shape factor,Y, is always fixed to 1.9.

The other material characteristics are:m= 12; KIc=
3.7 MPa m−1/2. The probability estimator remains un-
changed.

In order to simplify the reading and interpretation
of the numerous results thus obtained, we have used
a tridimensional plot in which Weibull’s modulus is
represented according to:

1. ∂σ/∂t andn for a given value of ln(A).
2. ln(A) and∂σ/∂t for a given value ofn.

These results take into account the propagation in mode
2 with V = 10−4 m s−1.
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Figure 10 Weibull’s modulus versus∂σ/∂t and ln(A) for 21≤ n≤ 23.

2.2.4.1. Ln(A) is fixed; ∂σ/∂t and n vary. Fig. 9a–d
illustrates the results obtained forn∈ [21; 23]. One ob-
serves that:

1. For a given stress rate, Weibull’s modulus exhibits
significant variations when the parametersAandnvary.

2. The curves reach a maximum forn= 23 and for
a stress rate value lying in the range generally used by
experimenters (50–2000 MPa s−1). One also observes
that whenA decreases, the maximum value reached by
m also decreases (15<mmax< 31), whereas the corre-
spondent stress rate increases.

3. The m value is slightly sensitive to the pa-
rameters of simulation if: (i) the stress rate is high
(∂σ/∂t > 2000 MPa s−1), whatever theA value is; (ii)
the stress rate and then value are weak (these conditions
are satisfied in ranges whose extent increases when the
A value decreases).

2.2.4.2.n is fixed;∂σ/∂t and ln(A) vary. Fig. 10a–d
illustrates results obtained for ln(A)∈ [−350;−330].
One observes that:

1. In the range∂σ/∂t ∈ [50; 2000 MPa s−1] a maxi-
mum appears, which corresponds the greatestA value,
whose value increases with that ofn.

2. The m value is slightly sensitive to the pa-
rameters of simulation if: (i) the stress rate is high
(∂σ/∂t > 2000 MPa s−1), whatever the ln(A) value is;

(ii) the stress rate and theA value are weak (these con-
ditions are satisfied in ranges whose extent increases
when then value increases).

Remark: when stage 2 of theV(K ) curve is neglected,
the results present important irregularities due to nu-
merical instabilities. This can be explained by very del-
icate numerical control of the crack propagation from
this stage.

3. Conclusions
Although it is generally considered as a characteristic
material parameter, Weibull’s modulus appears sensi-
tive to experimental conditions implemented for its de-
termination.

For an unimodal distribution of flaws governing ruin,
the estimatedm value depends indeed, on the form of
the probability estimator, on the number of samples
tested, on the loading rate and on the value of theA and
n parameters of Paris’ law.

The present work shows, chiefly, that:

1. The maximum likelihood method, recommended
by the European Standards, gives results more reliable
than least mean square methods.

2. For a given material, a minimum of 180 samples
is needed to estimate them value within±10% of its
real value.
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3. In the range of loading rates generally used (2–
2000 MPa s−1) Weibull’s modulus can vary from about
16% as compared with its real value.

4. For some values of the couple (A, n) of Paris’ law,
Weibull’s modulus exceeds 50% of its real value.

In conclusion, the numerals given beyond the dec-
imal point are never significant and, from a practical
standpoint, it would be good to match the values given
for Weibull’s modulus of their estimated uncertainties.
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